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Abstract. The effects of ferrofluid on the curved squeeze film between two annular plates, when the upper plate
approaches the lower one normally, are studied including the rotation of the magnetic particles and their magnetic
moments. The aim is to study the effects of rotation of the magnetic particles on the characteristics of the squeeze
film. The main equation is derived in the Appendix A. Expressions for the pressure, load capacity and response
time are obtained. Load capacity and response time are found to increase when the volume concentration of the
solid phase, Langevin’s parameter or the curvature of the upper plate are increased.
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1. Introduction

The study of a squeeze film between flat annular plates is a classical one [1, pp. 258–297].
Vibrations in jet engines can be absorbed using annular squeeze films between engine bearings
and their support. A pair of clutch plates may be modelled by two annular plates [2, pp. 85–
101]. Owing to elastic, thermal and uneven wear effects the plates encountered in practice are
not actually flat. In this work we consider the case of an exponentially curved upper plate as
studied, for example, by Murti [3]. Recently, many theoretical investigations were made using
a ferrofluid as lubricant owing to its various advantages such as long life, silent operation
and reduced wear. Verma [4] initiated the study of a ferrofluid-based squeeze film. Bhat and
Deheri [5] studied a squeeze film between porous annular disks. Shah et al. [6] extended their
study to include the curvature of the upper disk and rotation of both disks. Gupta and Vora
[7] analysed a squeeze film between curved annular plates. Bhat and Deheri [8] and Shah and
Bhat [9] analysed a squeeze film between curved porous circular disks, in both non-rotating
as well as rotating cases. Agrawal [10] studied a porous inclined slider bearing, and Bhat and
Deheri [11] a porous composite slider bearing using a magnetic fluid lubricant. All found
that magnetization of the fluid increased the load capacity of the bearing studied. All the
authors [4–6,8–11] used the Neuringer-Rosensweig model for a ferrofluid under a variable
oblique magnetic field. However, unlike the Shiliomis model [12] which was used by Sinha
et al. [13] to study the ferrofluid lubrication of cylindrical rollers with cavitation and by Shu-
kla et al. [14] to derive the pressure equation, the Neuringer-Rosensweig model fails to give
any contribution to the flow field when a constant magnetic field is used. The pressure equa-
tion derived in the Appendix A of the present work differs from that used by Shukla and
Kumar [14] which is derived under the assumptions that the ferrofluid is saturated, so that
the saturation magnetization does not depend upon the applied magnetic field and that the
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magnetic moment relaxation time is negligible. Recently Shah and Bhat [15] studied a ferro-
fluid squeeze film in a long journal bearing using the Shliomis, Jenkins and the Neuringer-
Rosensweig model of flow.

The aim of the present work is to study the behaviour of a curved squeeze film between
two annular plates with a ferrofluid lubricant under a constant transverse magnetic field using
the Shliomis model.

2. Analysis

The bearing consists of two annular plates each of inside radius b and outside radius a (a >

b). The geometry of the problem is shown in Figure 1. The film thickness h is taken as [3]

h=h0e−βr2
, b ≤ r ≤ a, (1)

where r is the radial coordinate, h0 is the central film thickness and β is the curvature of the
upper plate. The upper plate approaches the lower with a constant normal velocity

ḣ0 = dh0

dt
.

As the calculations in the Appendix A show, if an axially symmetric flow of the ferrofluid
between the plates under a constant transverse magnetic field is assumed, the film pressure p

is given by (A18), namely

1
r

d
dr

(
h3r

dp

dr

)
=12η0

(
1+ 5

2
φ

)
(1+ τ)ḣ0, (2)

where η0, φ, and τ are the viscosity of the liquid, volume concentration of the particles and
the rotational viscosity parameter, respectively.

Figure 1. Configuration of the Problem.
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3. Solution

Upon introduction of the dimensionless quantities

R = r

b
, h̄= h

h0
, β̄ =βb2, P = −h3

0p

η0b
2ḣ0

, (3)

and use of (1), Equation (2) transforms to

1
R

d
dR

(
e−3β̄R2

R
dP

dR

)
=−12

(
1+ 5

2
φ

)
(1+ τ). (4)

Solving Equation (4) subject to the boundary conditions

P(1)=P(k)=0, (5)

where k =a/b, we obtain the dimensionless pressure P as

P =A

∫ R

1

e3β̄R2

R
dR −

(
1+ 5

2φ
)

(1+ τ)

β̄

(
e3β̄R2 − e3β̄

)
, (6)

with

A=
(

1+ 5
2φ
)

(1+ τ)
(

e3β̄k2 − e3β̄
)

β̄
∫ k

1
e3β̄R2

R
dR

. (7)

The load capacity W of the bearing can be expressed in dimensionless form as

W̄ =− h3
0W

2πη0b
4ḣ0

=
∫ k

1
RP dR =−1

2

∫ k

1
R2 dP

dR
dR

=− 1

12β̄2

[
Aβ̄

(
e3β̄k2 − e3β̄

)
−2

(
1+ 5

2
φ

)
(1+ τ)

{
(3β̄k2 −1)e3β̄k2 − (3β̄ −1)e3β̄

}]
. (8)

The time taken by the upper plate to reach a central film thickness h0, starting from an initial
film thickness h1, is obtained in dimensionless form as

t̄ =πW̄

(
1

h̄2
0

−1

)
, (9)

where

h̄0 = h0

h1
, t̄ = h2

1Wt

η0b
4

. (10)

4. Results and discussion

The expressions for the load capacity, W̄ , and time to reach a thickness h0, t̄ , for a squeeze
film between flat plates are obtained by letting β̄ →0 in (8) and (9) and are given by

W̄ =−3
4

(
1+ 5

2
φ

)
(1+ τ)(k2 −1)

[
k2 −1
log k

− (k2 +1)

]
, (11)

t̄ = 3π

4

(
1+ 5

2
φ

)
(1+ τ)(k2 −1)

[
k2 −1
log k

− (k2 +1)

](
1− 1

h̄2
0

)
, (12)

the computed values of which correspond to the curves for β̄ =0 in Figures 3–6.
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One can obtain the expressions for the W̄ and t̄ by letting φ =0 in (8–9) and (11–12) for
the curved squeeze film case [7] and the classical case [1], respectively.

Expressions for dimensionless film pressure P , load capacity W̄ and response time t̄ of the
squeeze film are given by (6), (8) and(9), respectively. They are functions of the outer-inner
radii ratio k of the plate, the curvature β̄ of the upper plate, the volume concentration φ of
the magnetic particles, and Langevin’s parameter ξ . The computed values of the rotational
viscosity parameter τ for various values of φ and ξ are shown in Figure 2 which shows that
τ increases with φ as well as ξ .

The computed values of W̄ for various values of φ, ξ and β̄ are shown in Figures 3 and
4. W̄ increases with increasing values of φ, ξ and β̄. The values of W̄ when the upper plate
is flat (β̄ = 0) lie between those when the upper plate is convex (β̄ < 0) and those when the
upper plate is concave (β̄ >0). The values of t̄ for various values of φ, ξ and β̄ are shown in
Figures 5 and 6. Figures 5 and 6 are similar to Figures 3 and 4 and t̄ behaves like W̄ . One
concludes from (9) that t̄ is less than, equal to or greater than W̄ according to h̄0 being less
than, equal to or greater than

√
π/(π +1).

Figure 2. Values of τ for various values of φ and ξ . Figure 3. Dimensionless load capacity W̄ for various
value of φ and β̄ with ξ =10, k =2.

Figure 4. Dimension load capacity W̄ for various
values of ξ and β̄ with φ =0·075, k =2.

Figure 5. Dimesionless response time t̄ for various
values of φ and β̄ with ξ =10, k =2, h̄0 =0·75.
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Figure 6. Dimesionless response time t̄ for various values of ξ and β̄ with φ =0·075, k =2, h̄0 =0·75.

5. Conclusions

A constant magnetic field does not enhance the bearing characteristics in the Neuringer-
Rosensweig model. However, it does in the Shliomis model in which rotation of the magnetic
particles and their moments are included. Increases in the rotational parameter and the curva-
ture of the upper plate cause increases in the load capacity and response time of the annular
squeeze film. The load capacity and response time of the annular squeeze film can be made
optimal by a judicious choice of a concave upper plate.
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Appendix A, Derivation of the governing equation

Following Shliomis [12], Kumar [16, p. 9] pointed out that magnetic particles of a ferrofluid
can relax in two ways as the applied magnetic field changes. The first is by the rotation of
magnetic particles in the fluid given by the Brownian relaxation time parameter τB , and the
second is by rotation of the magnetic moment within the particles given by the relaxation
time parameter τs .

However, Shukla and Kumar [14] derived the pressure equation under the assumptions
that the ferrofluid is saturated so that the saturation magnetization is independent of the
applied magnetic field and the magnetic moment relaxation time is negligible. We derive below
the pressure equation without the above assumptions.

Assuming steady flow, neglecting inertia and the second derivative of the internal angular
momentum S̄, we obtain the following equations governing the flow [12]:

−∇p +η∇2q̄ +µ0(M̄ ·∇)H̄ + 1
2τs

∇ × (S̄ − I�̄)=0, (A1)

S̄ = I�̄+µ0τs(M̄ × H̄ ), (A2)

M̄ =M0
H̄

H
+ τB

I
(S̄ × M̄), (A3)

where p is the pressure, η is the viscosity of the suspension, µ0 is the permeability of free
space, H̄ is the applied magnetic field, M̄ is the magnetization vector, q̄ is the fluid velocity,
I is the sum of moments of inertia of the particles per unit volume, �̄= (1/2)∇ × q̄, τB is the
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Brownian relaxation time, τs is the magnetic moment relaxation time, and M0 is the equilib-
rium magnetization, together with the equation of continuity,

∇ · q̄ =0, (A4)

and Maxwell’s equations

∇ × H̄ =0, (A5)

∇ · (H̄ + M̄)=0. (A6)

Using (A2), we observe that (A1) and (A3) yield

−∇p +η∇2q̄ +µ0(M̄ ·∇)H̄ + 1
2µ0∇ × (M̄ × H̄ )=0 (A7)

and

M̄ =M0
H̄

H
+ τB�̄× M̄ − µ0τBτs

I
M̄ × (M̄ × H̄ ). (A8)

Langevin’s parameter ξ is a measure of the dimensionless field strength. For a strong magnetic
field ξ > 1. In this case τs can not be neglected. However, Shukla and Kumar [14] neglected
τs in their analysis. Then (A8) can be approximated as (see [12])

M̄ = M0

H
[H̄ + τ̄ (�̄× H̄ )], (A9)

where

τ̄ = τB

1+ µ0τBτs

I
M0H

.

For a suspension of spherical particles I/τs = 6ηφ and τB = 3ηV/(kBT ), where φ = nV is
the volume concentration of the particles, kB is the Boltzmann constant, n is the number of
particles per unit volume and T is the temperature, one can express τ̄ as

τ̄ = 6ηφ

nkBT (1+ ξ coth ξ)
, (A10)

taking

M0 =nµ(coth ξ −1/ξ) and H =kBT ξ/(µ0µ), (A11)

µ being magnetic moment of a particle, as in Shliomis [12]. Shukla and Kumar [14] assumed
that M0 did not depend upon ξ in contrast to (A11).

In an axially symmetric flow under a uniform magnetic field H̄ = (0,0,H0) with radial
velocity component u, (A7) and (A9) yield

∂2u

∂z2
= 1

η
(

1+ µ0M0H0 τ̄
4η

) dp

dr
. (A12)

From (A10–A12) one obtains

∂2u

∂z2
= 1

η(1+ τ)

dp

dr
, (A13)
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where

τ = 3
2
φ

ξ − tanh ξ

ξ + tanh ξ
. (A14)

Solving (A13) under the no-slip boundary conditions

u=0 when z=0, h,

one obtains

u= z2 −hz

2η(1+ τ)

dp

dr
. (A15)

Substituting (A15) in the integal form of the continuity equation

1
r

d
dr

∫ h

0
rudz+ ḣ0 =0

yields

1
r

d
dr

(
h3r

dp

dr

)
=12η(1+ τ)ḣ0. (A16)

If η0 is the viscosity of the main liquid, the viscosity of the suspension is given by the Einstein
formula [12]

η=η0

(
1+ 5

2φ
)

. (A17)

Equations (A16–A17) yield

1
r

d
dr

(
h3r

dp

dr

)
=12η0

(
1+ 5

2
φ

)
(1+ τ)ḣ0. (A18)
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